Menu
Woocommerce Menu

人类史上首张黑洞照片公布

0 Comment


澳门新萄京娱乐,12月18日下午消息,新浪“2019科技风云榜”年度盛典今日在北京香格里拉酒店开幕。本次科技风云榜以“重构新科技
赋能新生活”为主题,与众多行业领袖、业内大佬共话科技时代。中国科学院国家天文台研究员、中国科学院大学教授苟利军在盛典上发表《100年后,我们终于看见黑洞》的主题演讲。  苟利军表示,1915年爱因斯坦提出了广义相对论,几个月后,身处德国的物理学家卡尔什瓦希得到了爱因斯坦方程解,这个解就是我们现在所知道的黑洞的精确解,这是第一次现代意义上对于黑洞的描述。  在接下来的将近一百年间,人类对于黑洞的研究仅仅停留在理论的研究之上。对于黑洞长的什么样,几乎是一无所知。  而2019年从天文学的角度来说是黑洞之年,人类的黑洞研究取得了多项突破性的进展。今年4月,全球20个国家的300的位科学家联合发布了第一张全球唯一的黑洞照片;日前,中国科学院国家天文台的科研人员又发现了银河系当中最大的恒星级黑洞;除此之外,美国的科学家还发现了宇宙当中最小质量的黑洞。“所有这些发现中,毫无疑问,黑洞照片是最激动人心的一件事情。”他说。  苟利军表示,纵观整个人类科学史的发展,现代科学的发展得益于天文学的观测。过去的几十年,天文学又从现代科学受益无数。现代科学技术帮助科学家可以去发现一个更广阔和更神奇的宇宙。“基础科学是一个非常辛苦的严谨的和缓慢的,又是一个非常震撼性、革命性和催化性的研究。只有随着基础科学的进步,我们整个社会才能够取得进步。”苟利军最后说道。  以下为苟利军主题演讲《100年后,我们终于看见黑洞》实录:  各位嘉宾、各位朋友,下午好!很高兴能有这样一个机会和大家分享一些有关于天文分析的知识。  刚刚刘畅女士跟我们分享了一些航空方面的知识,接下来我带领大家走的更远一点,让我们去太空里面看一下,尤其是科学家是怎么认识遥远的黑洞的。2019年从天文学的角度来说可以说是黑洞之年,因为我们黑洞研究取得了多项突破性的进展。比如今年4月10号我们发布了第一张全球唯一的黑洞照片。而在前几天,中国科学院国家天文台的科研人员又发现了银河系当中最大的恒星级黑洞。除此之外,美国的科学家还发现了宇宙当中最小质量的黑洞。所有这些发现中,毫无疑问,黑洞照片是最激动人心的一件事情。  1915年爱因斯坦11月份提出了广义相对论,几个月之后,身处德国展现的物理学家卡尔什瓦希得到了爱因斯坦方程解,这个解就是我们现在所知道的黑洞的精确解,这是第一次现代意义上对于黑洞的描述。  在接下来的将近一百年间,我们对于黑洞的研究仅仅停留在理论的研究之上。我们对于黑洞长的什么样,几乎是一无所知。一直到最近的十多
年之内,科技的发展让我们能够有机会去追寻、去探究黑洞真实的模样。终于在今年,2019年4月份的时候,全球20个国家的300的位科学家联合发布了第一张黑洞照片。接下来就让我们看一下黑洞探寻的历史。  通过黑洞探寻的历史,我们也可以去窥探整个科学发展漫长的经历。说到黑洞,我们首先或许会有一些恐惧感,因为在很多电影中把黑洞都描述成无所不吃,甚至能够连光和时间都能够停止的巨人,庞然大物。所以,它具有非常强的引力。但是在一些物理学家的眼中,它又是非常神奇的。为什么?因为它或许可以在未来中档时间之门的角色,带领我们快速地进行宇宙的穿越。总体来说,黑洞是既神秘又神气的物种。黑洞是引力非常强的天体,所以要认识它,我们就得从引力的发展历史去探究。  谈到引力,自然而然我们就会想到17世纪伟大的物理学家牛顿,有一天他坐在苹果树下,看到下落的苹果,就意识到在宇宙当中应该存在着一种普遍存在的力,现在我们称之为万有引力。牛顿是一个非常伟大的物理学家,他不仅仅想到了这一点,他还让这个想法让我们现在非常流行的说法落地了。也就是说,他根据这个想法写下了一个非常经典的公式,数学表达式,这就是万有引力的表达式。通过这个公式,我们知道,他认为的引力是因为物体有质量而存在的。  他把这一理论总结在非常经典的自然哲学的数学原理一书中。在这一理论发表之后就得到了很多人的推崇,因为它不仅仅可以很好地解释天体在空间当中的运动,而且可以完美地预测天体未来的运动状态。在接下来的几百年中,他的理论不断地被验证,而且被更为广泛的应用。不仅仅应用在物理学当中,而且应用在非常多的其他的学科当中。牛顿的理论可以说是我们现代科学的起源。但是到了19世纪更多观测的发现,对于牛顿理论就提出了挑战。所以到20世纪初的时候,德国籍的物理学家爱因斯坦首先提出了狭义相对论,十年之后又提出了广义相对论。在这个新型的理论当中,他提出了一种对引力全新的看法,他认为引力并非由质量直接所产生,而是由有质量的天体导致了宇宙时空的弯曲,弯曲的时空呈现出一种引力的效应。  在爱因斯坦提出广义相对论的几个月中,身处德国展现的物理学家史瓦西就得到了这个复杂方程的精确解,但是很遗憾的是这个精确解虽然是我们所说的黑洞的精确解,但是这个黑洞是没有转动的黑洞。在宇宙当中几乎所有的天体都是转动的,包括地球。所以,当爱因斯坦看到这个精确解的时候,他虽然很惊奇,史瓦西能够快速地得到精确解,但是他并不相信这个解在宇宙当中是真实存在的。在接下来的几十年当中,由于战乱,由于科技的限制,对于黑洞的研究可以说是停滞的,只不过在1935年美国的原子弹之后,奥本海默和他的学生发现了宇宙有可能会形成一个起点,这就是我们现在所知道的黑洞。除此之外,对于黑洞的研究并没有太大的进展。爱因斯坦1955年去世之前,因为观测从来没有发现过黑洞的踪迹,所以爱因斯坦从来就没有相信黑洞这类神秘的天体在宇宙当中应该是存在的。但是时间到了60年代的时候,1963年,新西兰的数学家科尔得到了另外一个精确解,这一次这个黑洞是转动的。而且1964年,美国科学家通过发射探空火箭的方式,第一次发现了黑洞的踪迹,人类历史上第一个恒星量级的黑洞就此被发现了,这就是我们现在熟知的天鹅座X1。  因为理论和观测的双重突破,一下子吸引了大批的天文学家、物理学家投入到这个领域中,所以在接下来的二三十年中,关于黑洞的研究就进入了黄金时期。几乎我们现在所有知道的黑洞的知识,都是在接下来的二三十年当中取得的。在这期间,有一位非常突出的学者,他就是来自于普林斯顿大学的惠勒教授。比如我们现在知道的黑洞这一词,尽管不是他发明的,但是经过他的广泛推广,最终被大众所熟悉。除了惠勒之外,另外一位需要重点介绍的物理学家就是霍金。霍金在70年代的时候,当大家还认为黑洞没有任何辐射的时候,他就提出来黑洞应该会产生辐射。这就是我们现在所知道的霍金辐射。这个辐射尽管非常微弱,但是0和1的差别却是天壤之别。  在接下来的几十年当中,尽管我们在理论上已经取得了非常多的有关于黑洞的知识或者说认识,但是黑洞究竟长什么模样,我们还是不知道。所以,最近的一次对于黑洞最为震撼的描述,可以说是2014年的《星际穿越》电影。当时我在电影院看到这部电影中描述的黑洞的时候是被震撼到了的。不仅仅是我,作为电影科学医古文的基普索恩,当他第一次看到旋转黑洞高清描述的时候,他同样有着欣喜若狂的经历。为了得到高清黑洞的展现,英国公司利用30个团队人员,花费了将近一年的时间,得到了8000TB的数据,最终呈现给我们如此高清的黑洞,并且他们发表了相关的文章,来展现他们计算的技术。  对于黑洞探测从科学的角度一直没有停止,大约从十多年之前,科学技术发展到一定阶段,我们可以进行全球望远镜联网支持,来自于全球很多国家的科学家就试图对一些黑洞真正的进行成像。他们把这个项目叫做视界面望远镜项目。他们想看的两个黑洞,一个是来自于银河系中心的黑洞,另外一个是位于大约5500万光年之外的称之为M87的黑洞。右面展示的是M87光学波段的黑洞。需要多大的望远镜才能真正看清楚中心黑洞的模样?这幅图就是非常好的对比。蓝色代表的是哈勃望远镜所拍摄到的图像,而最中间的圆环就是我们所想拍摄的黑洞的尺度。这两者之间相差至少几千倍的差别。所以,如果我们要利用目前最先进的哈勃望远镜,未来超级哈勃望远镜的视物要达到几公里左右,才能分清中心黑洞的模样。  科学家没有办法去制造如此巨大的光学望远镜,他们发展出了一套称之为VR、AI联网的技术,把全球几乎所有的亚毫米波望远镜连成一个庞大的网络。这个望远镜口径可以达到1万多公里,这时候我们就可以对中心的黑洞进行成像,这些望远镜通常都是位于海拔非常高的地方,为什么?最重要的是减少大气对于电磁波的吸收。  除了观测的设备需要不断改进之外,我们在理论方面也需要做大量的模拟,因为黑洞周围是非常复杂的。所以,利用简单的纸和笔我们已经很难对气体在黑洞周围的运动状态做出一番描述,这时候我们就需要计算量非常大的相对论型的磁流体力学。每一次计算都需要上千个CPU,而且好几个月的计算时间。视界面望远镜团队对于各种不同情形做出了最终的计算,这幅图就展示了其中计算得到的部分结果。终于一切准备就绪以后,在2017年4月10日到15日之间,他们利用全球8个不同地方的望远镜,对这两个黑洞进行了观测,最终得到了大约5个PB的数据。因为数据量非常大,而且有一个望远镜按它是位于南极的。所以,利用我们现有的网络很难将数据传输回来。或许未来5G技术成熟以后,我们可以直接进行传输,但是目前非常困难。所以,他们采用的方法是将数据拷贝到磁盘之上,再用飞机运回到数据中心。  有两个数据中心,一个是在美国的MIT,另外一个位于德国。最终得到数据以后,他们进行相关分析,采用不同的方式对图像进行确认。确认以后,进行重构,最终得到我们所看到的黑洞照片。在得到黑洞照片的与此同时,我们已经做了数值的模拟,与我们的数值模拟库相比较,从而我们可以推断黑洞的性质。这就是2019年4月10日晚上9时在全球发布的第一张黑洞照片。  有了黑洞照片,与我们先前已经得到的数值结果相比较,就可以推断出有关于黑洞的性质。或许大家会对《星际穿越》电影当中的黑洞印象非常深刻,或许你会说为什么我们这次看到的第一张黑洞照片和《星际穿越》电影当中的照片竟然差别如此之大。当然我们没有办法飞到M87周围去看清楚,但是我们可以借助现代性能非常发达的计算机来模拟整个过程。  主要的原因是因为我们去看的黑洞视角不太一样,这次M87是沿着黑洞转动的方向去看的,但是《星际穿越》电影是沿着赤道方向展示的黑洞的模样。这是两者之间最大的差别。现代科技不仅仅给黑洞研究带来了非常大的便利,而且在讲述科技对天文研究所带来的影响的时候,引力波又是一个非常值得一讲的话题。引力波可以说是我们时空当中的唯一,它是一些致密天体在宇宙当中碰撞或者爆发时释放出来的巨大能量,对我们时空所产生的一种波动。这个被动非常微弱,微弱到多小?我们知道氢弹是这个地球上破坏力最大的一种武器。当年前苏联所尝试的氢弹当量达到了5000万可以说是所有氢弹当中破坏力最大的一次。如果我们能够站在氢弹爆发的最中心,去测量它对时空的干扰,它的干扰仅仅大约10个负27次方。一个原子核的大小是10个负8次方米,一个头发丝的大小是10的负5次方米。这个氢弹尽管对我们周围的物体造成了极大的威胁或者破坏,但是对于时空几乎是毫发无损。假如有一天一个非常强大的引力波穿越我们地球的时候,对于地球上的神泪会造成什么样的影响?它会不断地拉伸我们的人类。  比如在这幅图画中我们会看到以一种夸张的方式展示了引力波对人的影响,一个人会突然变瘦,或突然变胖。当然这是一种非常夸张的方式,真实中有多小。2015年人类第一次探到引力波的时候,是美国的引力波激光天文台探测到的,这次引力波的效应仅仅只使得一个原子的尺度发生了变化,只有10的负8次方米。所以,我们现代的科技已经能够做到如此精密的测量。1915年提出广义相对论,1916年引力波被预测,到2015年引力波第一次被直接探测到,我们整整经历了一个世纪的探索。我们可以看到整个科学的精神其实是非常非常漫长的。当然引力波也帮助我们发现了很多意想不到的事情,在原来我们根本没有想到在宇宙当中会存在着很多质量非常大的黑洞。紫色的原点就是代表我们在传统的望远镜当中所看到的黑洞的质量,蓝色的是引力波帮助我们发现的这些质量非常大的黑洞。所以,它成为我们探索黑洞的一个新的窗口。  在接下来的很多年内,还有一些其他更大的项目。比如美国8.4米一个被称之为LSST的项目。我们现在所看到的很多宇宙都是一个静态的宇宙,比如我们会看到一幅非常漂亮的图画,这个望远镜的目的就是要制作宇宙的一幅动画图。它的数据量每天晚上可以达到15个TB,这对于目前的处理能力来说已经是一个挑战。当然还有更大的挑战在等待着我们,中国参与的另外一个大型的项目平方公里阵。这个项目它的尺度可以达到一平方公里以上,包含的望远镜的数目达到2万多个小型的望远镜,每秒钟产生的数据量达到2个TB。所以,对于我们如何去处理这么庞大的数据,的确是一个非常大的挑战。  纵观整个人类科学史的发展,现代科学的发展得益于天文学的观测。过去的几十年,天文学又从现代科学受益无数。现代科学技术帮助科学家可以去发现一个更广阔和更神奇的宇宙。最后,我想以麻省理工大学当时在探测到引力波之后的那句话作为结尾,基础科学是一个非常辛苦的严谨的和缓慢的,又是一个非常震撼性、革命性和催化性的研究。如果没有基础学科最好的设想就无法得到改进创新也只是小打小闹,只有随着基础科学的进步,我们整个社会才能够取得进步。谢谢大家!

钱德拉X射线天文台拍摄的天鹅座X-1照片。 来源维基百科

fontSizeSmall BSHARE_POP”>

因为数据量非常大,而且有一个望远镜位于南极。利用现有的网络很难将数据传输回来,或许未来5G技术成熟以后,我们可以直接进行传输,科学家采用的方法是将数据拷贝到磁盘上,用飞机运回到数据中心。

法国数学家、物理学家拉普拉斯根据牛顿力学计算,一个直径为太阳250倍而密度与地球一样大的天体,其引力足以捕获其发出的光线而成为一个暗天体,也称为“暗星”。

万有引力发展史

澳门新萄京娱乐 1

从科学角度对于黑洞探测,一直没有停止。十年前,科学技术发展到一定阶段,我们可以把全球望远镜联网,来自于全球很多国家的科学家就试图对一些黑洞进行真正的成像,他们把这个项目叫做视界面望远镜项目。

在此之前如何确认黑洞的存在?

在接下来的几十年中,由于战乱、科技的限制,对于黑洞的研究可以说是停滞的。仅仅在1939年,奥本海默和他的学生发现了大质量恒星坍缩有可能会形成一个奇点,这就是我们现在所知道的黑洞,除此之外,对于黑洞的研究并没有太大的进展。

●1798年

在接下来的几百年中,他的理论不断被验证,而且被更为广泛的应用,不仅在物理学中,还应用在其他非常多的学科中。牛顿理论可以说是现代科学的起源,但是到了19世纪,更多观测的发现,让科学家对牛顿理论提出了挑战。20世纪初的时候,爱因斯坦首先提出了狭义相对论,十年之后又提出了广义相对论。在这个新型的理论当中,他提出了一种对引力全新的看法,他认为引力并非由质量直接产生,而是由有质量的天体导致了宇宙时空的弯曲,弯曲的时空呈现出一种引力的效应。

人类首张黑洞照片“冲洗”完成,这一神秘天体终于被人类看到了真容。4月10日晚,数百名科学家参与合作的“事件视界望远镜”项目在全球多地同时召开新闻发布会,发布了人类拍到的首张黑洞照片。该黑洞图像揭示了室女座星系团中超大质量星系M87中心的黑洞。该黑洞距离地球5500万光年,质量为太阳的65亿倍。图中心的暗弱区域即为“黑洞阴影”。

上图是以一种夸张的方式展示了引力波对人的影响,一个人会突然变瘦,或突然变胖。但实际上,引力波带来的人体的变化都没有一个原子核大。

8座望远镜组成超大“虚拟”望远镜

除了观测设备需要不断改进之外,理论方面也需要做大量模拟,因为黑洞周围非常复杂。利用简单的纸和笔,科学家已经很难对气体在黑洞周围的运动状态做出描述,这时需要相对论型的磁流体力学,每一次计算都需要上千个CPU,运算好几个月。

记者了解到,包括中国科学院上海天文台在内的一些中国机构参与观测和数据处理,中科院国家天文台副台长薛随建说,此次参与为中国今后在相关国际合作中发挥更重要作用做了良好示范。

在爱因斯坦提出广义相对论的几个月后,德国物理学家卡尔·史瓦西就得到了这个复杂方程的精确解,但很遗憾的是,这个精确解虽然是黑洞的精确解,但是这个黑洞是没有转动的黑洞,而在宇宙当中几乎所有的天体都是转动的,包括地球。所以,爱因斯坦看到这个精确解的时候,虽然很惊奇,但他并不相信这个解是真实存在的。

完美验证爱因斯坦相对论预言

这部电影中对于黑洞的展现也震撼到了我。不仅仅是我,作为电影科学顾问的诺奖得主–基普·索恩,他第一次看到高清旋转黑洞的时候,同样欣喜若狂。为了得到高清黑洞的展现,英国双重否定公司利用30个人的团队,花费了将近一年的时间,得到了8000TB的数据,最终呈现给影迷如此高清的黑洞渲染特效,并且他们发表了相关文章,来展现他们的计算技术。

观测窗口期每年大约只有10天

视界面望远镜团队对于各种不同情形做出了最终计算,上图展示了其中计算得到的部分结果。终于一切准备就绪,2017年4月10日到15日,他们利用全球8个不同地方的望远镜,对这两个黑洞进行了观测,最终得到了大约5
PB的数据。

此外,在2017年4月的联合观测以后,研究团队还进行了一些数据收集和校准的工作。苟利军说,科学家需要对望远镜接受的光子进行定标,确保不同望远镜接收到的光子是来自于同一时刻,最后才能将所有图像进行叠加。其中还有些缺失或模糊的部分,需要科学家们拼图。

他把这一理论总结在经典的《自然哲学的数学原理》一书中。这一理论发表后得到了很多人的推崇,因为它不仅可以很好地解释天体在空间当中的运动,而且可以完美地预测天体未来的运动状态。

各种间接证据均证明黑洞确实存在

有了黑洞照片,与先前已经得到的数值结果相比较,科学家就可以推断出有关于黑洞的性质。或许大家会对《星际穿越》电影当中的黑洞印象非常深刻,当然,我们没有办法飞到M87周围去做一直接比较,但是我们可以借助现代性能非常发达的计算机来模拟整个过程。你可能会问:“为什么我们这次看到的第一张黑洞照片和《星际穿越》电影当中的照片竟然差别如此之大?”

现在望远镜的半径越造越大,我国的FAST已经有500米口径,已经发现了很多脉冲星。但是,要想观测遥远的黑洞,依靠目前任何单个望远镜都远远不够。2017年的4月5日到14日之间,来自全球30多个研究所的科学家们开展了一项雄心勃勃的庞大观测计划,利用分布于全球不同地区的8个射电望远镜阵列组成一个虚拟望远镜网络。苟利军说,在2017年8个不同的望远镜进行观测的基础上,2019年又加了一台望远镜。

黑洞研究黄金三十年

“在电影《星际穿越》中,在黑洞外部亮的圆环的衬托下,中间有黑色的区域,我们将这块区域称为‘黑洞的阴影’。”苟利军说。

《科学大家》专栏投稿邮箱:sciencetougao@sina.com
来稿请注明姓名、单位、职务

●1939年

假如有一天,一个非常强大的引力波穿越地球的时候,会对地球上的人类造成什么影响?它会不断地拉伸人类。

我国天琴计划将搜寻黑洞

引力波也帮助人类发现了很多意想不到的事情,原来我们根本没有想到在宇宙中,会存在着很多质量非常大的黑洞。紫色的原点就是代表传统望远镜所看到的黑洞质量,蓝色是引力波帮助我们发现的质量非常大的黑洞。所以,引力波成为人类探索黑洞的一个新窗口。

庞大数据需要计算机进行复杂的处理

由此也说明,我们现代的科技已经能够做到如此精密的测量。

袁峰说,图片中亮的区域和暗的区域,对比度超过10倍。周围有个圆环结构,十分接近圆形,是因为引力透镜造成的。另外南北的不对称性很明显,南边亮,北边暗。这是因为多普勒增量效应,南边物质朝我们运动,就会变亮;北边物质远离我们,就会变暗。

牛顿是一位非常伟大的物理学家,他不仅仅想到了这一点,他还让这个想法“落地”了,他根据这个想法写下了一个非常经典的公式:万有引力表达式。通过这个公式,我们知道,他认为引力是因为物体有质量而存在的。

德国天文学家史瓦西发现所有的星体都存在一个史瓦西半径,如果星体的实际半径比它的史瓦西半径要小,那么它就会变成一个黑洞。比如,太阳的史瓦西半径是3000米。

主要的原因是我们看的黑洞视角不一样,
拍摄M87是沿着黑洞转动的方向去看的,但是《星际穿越》电影中是沿着赤道方向展示的黑洞模样。这是两者之间最大的差别。

释疑6

从1915年提出广义相对论,1916年引力波被预测,到2015年引力波第一次被直接探测到,人类整整经历了一个世纪的探索。

有了这幅照片,科学中一些与黑洞有关的悬而未决的问题,就有了解决的可能。

1915年,爱因斯坦提出了广义相对论,几个月之后,身处德国战壕中的物理学家卡尔·史瓦西求得了爱因斯坦方程的精确解,这个解就是现在我们所知道的黑洞解,没有转动的黑洞解,这也是第一次现代意义上对于黑洞的描述。

《星际穿越》中黑洞巨大的吸积盘吸引了很多观众,被称为最接近黑洞的想象。不过,苟利军表示,因为之前谁都没有“看”到黑洞的照片,之前的图像都是想象和推测出来的。“广义相对论在很多情形下都被验证是正确的,如果广义相对论是正确的,那么我们看到的黑洞应该就是这样。”

《科学大家》栏目精彩文章汇总

“事件视界望远镜”是什么?

在接下来的近一百年里,人类对黑洞的研究仅仅停留在理论上,我们对于黑洞长什么样几乎一无所知。

美籍犹太裔物理学家奥本海默根据广义相对论证明,当天体的质量大于临界质量时,引力坍塌后不可能达到任何的稳态,只能形成黑洞。

因为理论和观测的双重突破,一下子吸引了大批的天文学家、物理学家投入到这个领域中,所以在接下来的二三十年中,黑洞的研究进入了黄金时期。我们现在知道几乎所有的黑洞知识,都是在这二三十年中获得的。

中国科学院上海天文台研究员袁峰在发布会现场介绍,照片上的黑洞离地球有5500万光年,质量大概是太阳的65亿倍。照片上是它5500万年以前的样子,黑洞周围的空间是弯曲的。黑洞本身是不可见的,把黑洞放到放光的背景里,看到的照片就是这样。

他们想看的两个黑洞,一个是来自于银河系中心的黑洞,另外一个位于大约5500万光年之外的M87黑洞,上图右侧展示的就是M87光学波段的黑洞。

这张照片在科学上有多重要?

这一年,黑洞研究取得了多项突破性进展。4月10日,科学家发布首张全球唯一的黑洞照片;11月28日,中科院国家天文台的科研人员又发现了银河系当中最大的恒星级黑洞,除此之外,美国科学家还发现了宇宙中最小质量的黑洞。而这些发现中,毫无疑问首张黑洞照片是最激动人心的一件事。

比如,恒星、气体的运动透露了黑洞的踪迹。黑洞有强引力,对周围的恒星、气体会产生影响,于是我们可以通过观测这种影响来确认黑洞的存在,也可以根据黑洞吸积物质发出的光来判断黑洞的存在。再就是通过看到黑洞成长的过程发现黑洞。

总体来说,黑洞是既神秘又神奇的天体。黑洞引力非常强,所以要认识它,我们就得从引力的发展历史去探究。

中科院国家天文台研究员刘继峰领导的国际团队在世界上首次成功测量到X射线极亮天体的黑洞质量,研究成果2013年11月28日发表在国际权威杂志《自然》上。他们在3个月的时间跨度上对漩涡星系中X射线极亮源M101ULX-1进行了研究,并确认其中心天体为一个质量可与恒星比拟的黑洞。这个黑洞加伴星形成的黑洞双星系统位于2200万光年之外,是人类迄今发现的距离地球最遥远的黑洞双星。

2015年9月,人类第一次探到引力波,是由美国的引力波激光天文台探测到的,这次引力波的效应仅仅只使得一个原子的尺度发生了变化,只有10的负18次方米。

●1916年

通过黑洞探寻的历史,我们可以窥探整个科学发展的漫长历史。

他解释,黑洞的视界并不是发光区域,这个黑洞的视界在阴影里,比阴影面积要小一些。具体多大,广义相对论做出了详细的预测。

说到黑洞,或许我们会有一些恐惧感,因为在很多电影中把黑洞都描述成无所不“吃”,甚至连光和时间都能够停止的“巨人”,但是在一些物理学家的眼中,它又是非常神奇的,因为它或许在未来会充当时间之门的角色,带领人类快速地进行宇宙穿越。

澳门新萄京娱乐 2

因为观测从来没有发现过黑洞的踪迹,所以直到1955年爱因斯坦去世,他都没有相信黑洞这类神秘的天体是存在的。

爱因斯坦广义相对论诞生,预言存在黑洞这样一种天体。

出品:新浪科技《科学大家》

苟利军说,虚拟的大望远镜阵列并非直接拍出了黑洞的图像,而是给出了许多数据,必须经历复杂的计算机处理过程。

现代科技不仅仅给黑洞研究带来了非常大的便利,而且在讲述科技对天文研究所带来影响时,引力波是一个非常值得一讲的话题。引力波可以说是时空当中的涟漪,它是致密天体在宇宙中碰撞或者爆发时释放出来的巨大能量,对时空所产生的一种波动。

“事件视界望远镜”就是利用“甚长基线干涉技术”和全球多个射电天文台的协作,构建一个口径等同于地球直径的“虚拟”望远镜。

这个波动非常微弱,我们知道,氢弹是地球上破坏力最大的一种武器。当年前苏联所尝试的氢弹达到了5000万吨当量,可以说是所有氢弹当中破坏力最大的一次。如果我们能够站在氢弹爆发的最中心,去测量它对时空的干扰,干扰仅仅为10的负27次方。一个原子核的大小是10个负18次方米,一个头发丝的大小是10的负5次方米。一比较我们就可以看出,这个氢弹尽管对周围的物体造成了极大破坏,但是对于时空几乎是毫发无损。

要保证分布在全球各地的8个望远镜都能看到这两个黑洞,观测窗口期非常短暂,每年只有大约10天,2017年只有4月5日到4月14日合适。

银河系内最重的恒星级黑洞LB-1的艺术想象图

给“黑洞”拍照难在哪?

下一步:拍摄黑洞动态照

●1970年

需要多大的望远镜才能真正看清楚中心黑洞的模样?上图就是非常好的说明。蓝色代表是哈勃望远镜所拍摄到的图像,而最中间的圆环就是我们所想拍摄的黑洞的尺度。这两者之间相差至少几千倍。所以,如果我们要利用目前最先进的望远镜,望远镜的口径要达到几公里左右,才能分清中心黑洞的模样。

苟利军说,因为是第一次看到黑洞,从科学的角度可以提供很多信息,帮助我们了解气体在黑洞内区真正的运动状态。

谈到引力,自然而然我们就会想到17世纪伟大的物理学家–牛顿,他坐在树下,看到下落的苹果,就意识到在宇宙中应该存在一种普遍的力,现在我们称之为万有引力。

光都逃不出来,如何拍黑洞?

时间到了60年代,1963年新西兰的数学家科尔得到了广义相对论方程另外一个精确解,这一次的黑洞解是转动的。而在一年之后的1964年,美国科学家通过发射探空火箭,第一次发现了黑洞的踪迹,人类历史上第一个恒星量级的黑洞就此被发现,这就是我们现在熟知的天鹅座X1。

释疑3

撰文:苟利军 中国科学院国家天文台研究员、中国科学院大学教授

释疑4

在这期间,有一位非常突出的学者:普林斯顿大学的惠勒教授。我们现在知道的黑洞这一词,尽管不是他发明的,但经过他的广泛推广,最终被大众所熟悉。

一些悬而未决的问题有了解决的可能

科学家没有办法去制造如此巨大的光学望远镜,他们发展出了一套称之为VLBI联网的技术,把全球几乎所有的亚毫米波望远镜连成一个庞大的网络。这个望远镜口径可以达到1万多公里,就可以对中心黑洞进行成像,这些望远镜通常都位于海拔非常高的地方,这是为了减少大气对于电磁波的吸收。

吴庆文说,目前由我国主导的天琴空间引力波探测器计划,预计在2030-2035年间发射,在10万公里高度的地球轨道上部署三颗绕地球运转的卫星,组成臂长17万公里的等边三角形,形成空间引力波探测器。天琴引力波探测器将可以探测到宇宙诞生初期第一代恒星或气体云塌缩形成的双大黑洞合并产生的引力波,这将帮助我们理解宇宙早期种子黑洞、黑洞的增长历史以及星系演化等重大天文与物理学问题。因此,天琴空间引力波计划必将成为下一个20年探测宇宙黑洞的利器,特别是可能会搜寻到大量的中等质量黑洞。

推荐

黑洞研究史

数据中心有两个,一个位于美国的MIT,另一个在德国。得到数据以后,科学家进行相关分析,采用不同的方式对图像进行确认。确认以后,进行重构,最终得到我们所看到的黑洞照片。在得到黑洞照片的同时,科学家已经做了数值的模拟,与数值模拟库相比较,从而可以推断黑洞的性质。这就是2019年4月10日晚上9时在全球发布的第一张黑洞照片。

释疑2

从天文学的角度来看, 2019年可谓是黑洞之年。

“之前根据研究,我们知道了黑洞周边有一些很壮观的现象,比如喷流等,还知道了黑洞的质量、转动等性质。但是,之前没有很好的方式去了解,虽然有一些方法,但可能有误差,也不知道是不是准确。因为不同的模型得到的结果往往偏差很大,相差几倍在天文学中是很正常的。”

在接下来的很多年内,还有一些其他更大的项目正在进行。比如美国的LSST项目。我们现在所看到的很多宇宙都是一个静态的宇宙,比如我们会看到一幅非常漂亮的图画,而这个望远镜的目的就是要制作宇宙的一幅动画图。它的数据量每晚上可以达到15TB,这对于目前的计算处理能力来说是非常大的挑战。

释疑1

纵观整个人类科学史的发展,现代科学的发展得益于天文学的观测。过去的几十年,天文学又从现代科技中受益无数,现代科学技术帮助科学家可以去发现一个更广阔和更神奇的宇宙。天文学作为一门基础学科,我对麻省理工学院的校长在引力波发现之后所说的一段话深表赞同,他说道:“基础科学是非常辛苦、严谨和缓慢的,又是非常震撼性、革命性和催化性的研究。如果没有基础学科,最好的设想就无法得到改进,创新也只能是小打小闹,只有随着基础科学的进步,我们整个社会才能够取得进步。”

●1974年

除了惠勒之外,另外一位需要重点介绍的物理学家就是霍金。霍金在70年代,当大家还认为黑洞没有任何辐射的时候,他就提出黑洞应该会产生辐射,这就是我们现在所知道的霍金辐射。这个辐射尽管非常微弱,但是0和1的差别却是天壤之别。

释疑5

澳门新萄京娱乐 3

黑洞几乎所有质量都集中在最中心的“奇点”处,并在周围形成一个强大的引力场,在一定范围之内,连光线都无法逃脱。光线不能逃脱的临界范围被称为黑洞的半径或“事件视界”,也叫“视界面”。

一直到最近十多年,科技的发展让人类有机会去追寻、去探究黑洞真实的模样。终于在2019年4月份,全球20个国家的300多位科学家联合发布了第一张黑洞照片。

美国的“自由”号人造卫星发现位于天鹅座X-1上一个比太阳重30多倍的巨大星球,被一个重约10个太阳的看不见的物体牵引着。天文学家一致认为这个物体就是黑洞,这是人类发现的第一个黑洞。

在接下来的几十年当中,尽管人类在理论上已经取得了非常多的知识,但是黑洞究竟长什么模样,我们还是不知道。所以,最近一次对于黑洞最为震撼的描述,应该是2014年上映的《星际穿越》电影。

光既有波动性又有粒子性,观测到的每一时刻波动性非常强,所以需要对每一时刻接收的相位进行校对。苟利军作了一个形象的比喻,“我们拍照片的时候,如果手晃动,相片会模糊。这跟相机的工作模式有关系,相机的曝光时间要非常短,比手晃动的速度快很多,才能拍清楚。这就是为何要用高速摄像机拍摄运动员奔跑的形象,如果用普通照相机拍摄,会得到一个模糊的照片。”

当然还有更大的挑战在等待着我们,中国参与的另外一个大型项目平方公里阵射电望远镜。它的尺度可以达到一平方公里以上,包含2万多个小型望远镜,每秒钟产生的数据量达到2TB。所以,如何去处理这么庞大的数据,的确是一个非常大的挑战。

●1915年

华中科技大学物理学院的科学家吴庆文教授也参与其中,他表示,他和研究生冯建超博士主要参与了理论分析方面的工作。在过去几年里进行了系列研究,他们对黑洞吞噬物质过程、黑洞自旋等重要信息做了较好限定,提出这次观测的黑洞图像应该是来自黑洞吞噬的物质,而非相对论性喷流。此外,还发现这个巨型黑洞很有可能是高速自转的。这次拍摄的黑洞照片,较好支持了他们的研究结果。

苟利军解释,“连光都逃不出来”指的是黑洞里面的情况,这次拍摄的是黑洞周围尚未掉入黑洞的气体所产生的光线和辐射。

袁峰具体解释,人类通过射电望远镜得到这样一张照片,结合爱因斯坦广义相对论和黑洞吸积理论进行预测,把观测到的图像和预测的图像对比,发现吻合得非常好,完美地验证了爱因斯坦的广义相对论。

“冲洗”图像为何耗费两年?

苟利军说,这些望远镜都是在亚毫米波波段,通常需要在海拔比较高的地方来减少大气中水汽对于亚毫米光子的影响。比如位于智利的ALMA望远镜的海拔就有5000多米。据了解,这座望远镜耗资140亿美元,灵敏度是目前单阵列当中最高的。

中科院国家天文台研究员苟利军表示,在这次拍照前,天文学家们通过各种间接证据表明,黑洞确实存在。

周围气体产生的光线和辐射可观测

“现在看到的亮环就是光线扭曲以后得到的结构,如果不扭曲,是看不到这样的图像的。理论和观测是互相促进的。”袁峰表示,目前来看,这张照片验证了爱因斯坦的广义相对论,后续的观测将解决一些还没搞清楚的问题。

英国物理学家霍金证明黑洞具有与其温度相对应的热辐射,称为“黑洞辐射”。黑洞的质量越大,温度越低,辐射过程就越慢。

据袁峰介绍,照片中一部分是中心区域不太发光的阴影,另一部分是围绕这个阴影的发亮的圆环。“我们最先看到的是M87星系,随着视角拉近,我们看到了黑洞喷流的结构,最后对黑洞进行了成像。大家想知道为什么黑洞会形成阴影,黑洞会形成一个环状吸积盘,与吸积盘垂直的方向有一个喷流结构。吸积流快速旋转,大概两天就能绕着M87转一周,随着物质的吸积,接近黑洞的时候,物质会变得非常热,发出非常强的辐射,就会被我们看见。由于一部分光子被黑洞吞噬,就会形成阴影。”袁峰解释,光就是从吸积盘上发出的,而黑色的阴影要比黑洞本身大几倍。

现场科学家介绍,能够得到这样一个图像,需要有地球直径大小的望远镜,为了得到这样一个望远镜,要求把地面上能够针对黑洞成像的望远镜组合起来。望远镜越多,成像质量越好,以后随着更多望远镜加入观测网络,黑洞成像质量会更好,对爱因斯坦理论验证会更精确。

有8个不同的望远镜,每一个收到的数据量都非常大,加到一起差不多有10PB。现在一般的笔记本电脑的硬盘是1TB,这些望远镜为此次观测接收的数据可以装满1万多个笔记本。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图